

Research and development of battery technology in Australia

Alexey M. Glushenkov

Battery Storage and Grid Integration Program

Research School of Chemistry and Research School of Electrical, Energy and Materials Engineering

The Australian National University

ICAMT-ICMR 2019, Sentul, 8-9 October 2019

Talk outline

- Introduction on lithium-ion batteries
- Mining of lithium in Australia
- Battery applications in grid and home storage in Australia
- Electric vehicles in Australia
- Sustainable beyond-lithium batteries
- Research landscape in Australia
- Projects in Battery Storage and Grid Integration Program at ANU

Batteries enable a range of applications

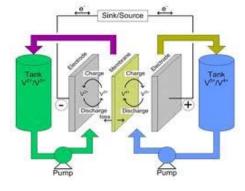
Portable electronics

Electrification of transport

Power tools

Integration of renewables into grid and home energy storage

Lithium-ion battery as a dominant technology


Pb-acid batteries

(reliable technology, close to 100% recycling) 35-40 Wh/kg energy density

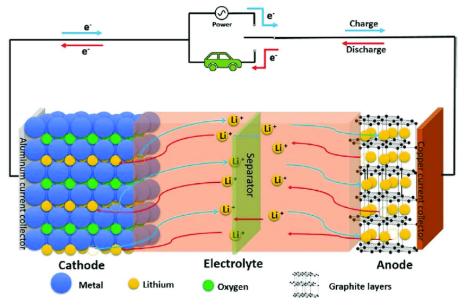
NiCd batteries

Energy density 40-60 Wh/kg

Flow batteries

(e.g., vanadium-redox, zinc-bromine)

External tanks; capacity depends on the size of tanks


Li-ion batteries

No or minimum maintenance Energy density of 100-265 Wh/kg

Li-ion battery – principle of operation

Commercialised battery type since 1991

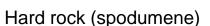
Standard cathode:

$$\begin{split} & \text{LiCoO}_2\\ & \text{LiMn}_2\text{O}_4\\ & \text{LiFePO}_4\\ & \text{LiNi}_x\text{Mn}_y\text{Co}_z\text{O}_2\\ & \text{LiNi}_x\text{Co}_y\text{Al}_z\text{O}_2 \end{split}$$

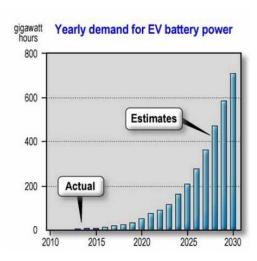
Reproduced from Liang et al., Solid State Ionics 2018

Standard anodes:

Graphite Li₄Ti₅O₁₂ Si-based anodes


Standard electrolyte: carbonate-based organic electrolytes

Mining of lithium in Australia



Currently up to 60% of lithium is to be supplied from Western Australia

LiAl(SiO₃)₂

6 wt.% Li is a standard concentrate product to ship overseas

Production of lithium hydroxide, partnerships

Tianqi plant in Kwinana

24,000 tonnes per annum; expansion to 48,000 tonnes p.a. is anticipated

Partnerships with global EV companies and manufacturers of battery chemicals

Pilbara Minerals – with Great Wall Motors

Kidman Resources
- with Tesla and LG Chem

Mineral Resources - with Jiangxi Ganfeng Lithium, Co.

TESLA

Mineral Resources
Initial 10,000 tonnes p.a. capacity proposed

Albemarle

Plant of 60,000 - 100,000 tonnes p.a. is proposed

Global lithium oversupply – 12 to 18 months

Australian supply overtakes demand (temporary)

Large-scale batteries in the grid to support the penetration of renewables

Blackouts in the grid in SA in 2015 and 2016

Above: Damaged transmission lines in South Australia in 2016

· Blackouts are avoided

 140 ms to engage (gas or steam generators take minutes to respond and adjust)

A\$40M p.a savings in frequency costs

~1.4 A\$M profit in 2018 by power shifting

100 MW/125 MWh Tesla battery in Hornsdale, SA, (launched in Dec 2017)

Subsequent large scale grid battery projects

South Australia: 100 MW/300 MWh (Solar River Project, SA)

Victoria: 30 MW/30MWh (Ballarat, VIC)

Victoria: 30 MW/30 MWh (Gannawarra, VIC)

South Australia: 900 MW battery is planned (to supplement hybrid solar-wind plant)

100% electricity from renewable energy in Australian Capital Territory (ACT) in 2019

Royalla solar farm in ACT

- Grid battery project has been announced in Sep 2019
- 20 MW/40 MWh specification
- Provider to be selected by mid-2020, two years lag to build
- The battery will be able to power 25,000 homes for 2 hours

Home battery storage to supplement PV

Australia is a global leader in solar cell installations in homes

10% of electricity generation capacity is behind the meter today

Up to 45% of electricity will be supplied in this way by 2040

2 million homes are now energy producers as well as consumers in Australia

Residential batteries

Tesla Powerwall 2, 5 kW/13.5 kWh A\$11,700

Installation trends (data from 2017):

2016: 6,750 installations

2017: 20,000

2018: 40,000 (forecast)

Enphase battery, up to 3.38 kW/14.8 kWh Cost depends on modular specification

- Australia is arguably #1 country in uptake of residential storage
- Efficient energy use at home is enabled
- Home battery can be used to support the grid (Bruny Island trial)
- Expected to be a common part of electricity grid in Australia

Slow adoption of electric cars in Australia

- 0.5% of cars on road in 2018
- <1% of new vehicle sales
- emissions are likely to increase until 2029 due to limited sales of Evs
- only 4% of sales are forecasted by 2023
- In 2019 sales of EVs declined, only 0.2% of new cars (Bloomberg)

27 EV models for sale in Australia (216 in China and 96 in Europe)

EV fleet – about 5,000 cars (global fleet - ~2 million cars)

International context:

Britain and France – end sales of petrol cars by 2040

India – only electric cars sold by 2030,

China – more than 20% by 2025 to be EVs of plug-in vehicles

Slow EV uptake: infrastructure or policy?

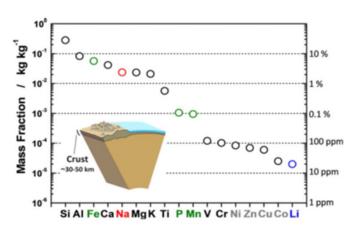
REACHES AROUSE THE WORLD

REACHES AROUSE THE WORLD

WHITE HOLD THE

One of the successful global fast charger manufacturing companies is Australian (projects in UK, Norway) QLD: Electric Super Highway (stations between Brisbane and Cairns, 17 locations); State-owned Ergon Energy utility identified 100 places for charging stations in the network with surplus capacity (charging initially free)

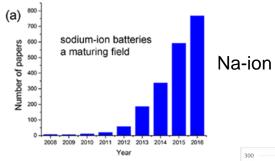
Western Australia – 70 charging stations in Perth


Adelaide – 40 (all data from 2017)

Need for national programs and policy

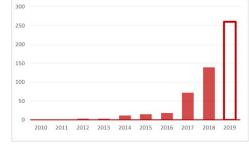
- Cost premium for EVs in Australia of A\$8,000 A\$12,000
- Relaxed emission requirements for vehicles in Australia

Sustainability: post-lithium battery chemistries



Abundance of elements (Yabuuchi, Komaba, Sci. Technol. Adv. Mater. 15, 043501, 2014)

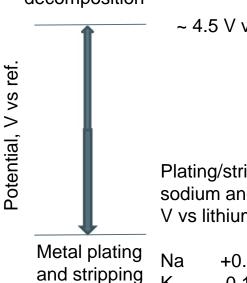
Low abundance of Li and geographic localisation (Chile, Bolivia, China, Australia)


Na, K are about 700 times more abundant and available everywhere

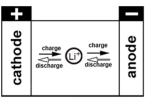
Trends in publication numbers in sodium and potassium-ion batteries

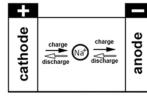
K-ion

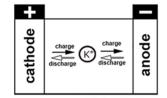
Number of papers


Year

Comments on feasibility of beyond-lithium batteries


The same "rocking chair" principle


Organic electrolyte decomposition



~ 4.5 V vs lithium

Plating/stripping potentials for sodium and potassium, V vs lithium

Identify anodes that operate at low potentials vs Na or K

Na examples: hard carbons, phosphorus K examples: graphite

Identify cathodes that operate at high potentials vs Na or K

Na examples: NoCrO₂, Na₃V₂(PO₄)₂F₃

K examples: K₂Mn[Fe(CN)₆],

Optimise electrolytes, additives and binders

Australia: competitive research landscape

Major research universities

- ~20 research-intensive universities
- some form of battery research probably in each
- Not necessarily coordinated, a lot of competition

Other universities with significant battery research

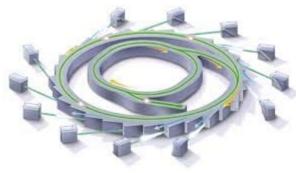
Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Includes battery research facility in Melbourne (Clayton area)

- Electrolytes
- Battery prototyping (e.g., pouch cell fabrication)
- Battery characterisation
- Testing battery modules for integration with PV

Successful technologies Commercialised in the past:

UltraBattery



Cap-XX, Co.

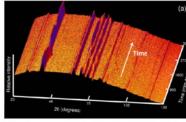
Australian synchrotron (Melbourne)

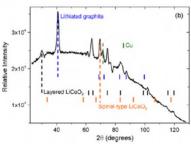
Access is based on competitive rounds of proposals

Useful beamlines:

- Powder diffraction (used a lot for in-situ battery characterisation)
- Infrared microspectroscopy
- Small and wide angle x-ray scattering (SAXS/WAXS)
- X-ray absorption spectroscopy (XAS)
- Soft x-ray spectroscopy (XPS, NEXAFS)

ANSTO Neutron Diffraction facility (Sydney)


Echidna, high resolution neutron diffractometer


Access is based on competitive rounds of proposals

- **Crystallographic information on materials**
- In-situ battery analysis

Example: commercial prismatic graphite-LiCoO₂ cell

Sharma et al., J. Power Sources, 2010

Wombat, high intensity powder diffractometer

Australian National Fabrication Facility

National fabrication network for micro- and nanofabrication

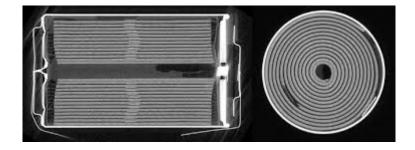
Nodes:

Australian Capital Territory (ANU)
Victorian Node (MCN)
NSW
South Australia
Queensland
Materials Node
Optofabrication Node

Melbourne Centre for Nanofabrication (Victorian Node)

- Various thin film and pattern fabrication techniques
- Relevant characterisation facility
- Largest clean room in Australia

Useful for micro-battery fabrication and preparing customised in-situ cells, electrode coatings


National Laboratory for X-ray Micro Computed Tomography (The Australian National University)

ANU supercomputer facility can be used for calculations

In principle capabilities (currently in discussion with laboratory's staff):

- Visualisation of the structure of batteries
- Changes in batteries upon abuse and cycling
- In-situ visualisation may be possible

Micro-CT scan of a cylindrical battery (literature example)

Battery Storage and Grid Integration Program (BSGIP) at ANU

Established in 2018 at ANU with support from the Australian Capital Territory government

Cross-college, cross-school program

- Research School of Electrical, Energy and Materials Engineering (ANU College of Computer Science and Engineering)
- Research School of Chemistry (ANU College of Science)

BSGIP Energy Storage

BSGIPData and Analytics

BSGIPDevices, Optimisation and Control

BSGIPRegulation, Markets and Models

BSGIP: integration of batteries in grid and home storage

Economic assessment of battery integration

Collection of information on electricity use in households with installed PV and batteries

Possible principles for future energy tariffs

Scenarios of peer-to-pear energy trading

Social aspects

Social attitudes to battery installations at home and energy sharing

How people feel towards these innovations and barriers in society

Control algorithms and software

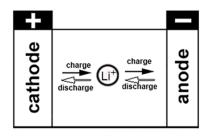
Smart control of batteries installed with PVs in homes

Collection of information on grid parameters (frequency, voltage) and control of these within the desired operational envelopes

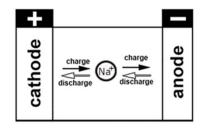
 Distribute Energy Resources Laboratory (project launched in Sep 2019, under construction)

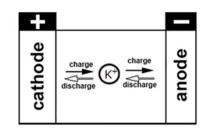
Simulation of electricity use in a residential street with solar panels and battery integration

Development and test of technologies and control systems needed for Australia's future energy system


BSGIP: Post-lithium metal-ion batteries

Battery materials and devices laboratory (operates in Research School of Chemistry)


Focus on post-lithium metal-ion batteries


- Na-ion batteries
- K-ion batteries
- Ca-ion batteries (to commence in 2020)

Enabling transition from Li-ion batteries

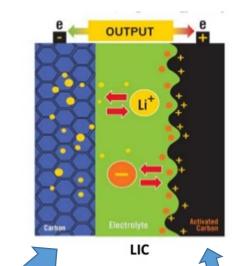
to more sustainable chemistries

FEATURE ARTICLE

Potassium-Ion Batteries

Potassium-Ion Battery Anode Materials Operating through the Alloying-Dealloying Reaction Mechanism

Irin Sultana, Md Mokhlesur Rahman, Ying Chen, and Alexey M. Glushenkov*


(talk on Oct 9, EEM symposium)

(usually lithiated graphite

or lithium titanate)

BSGIP: lithium-ion capacitors

Battery electrode (activated carbon)

Concept proposed by Amatucci in 2001

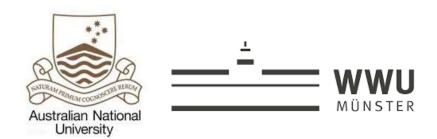
Commercialised in 2011 in Japan

Charge-discharge profiles of a capacitor (triangular charge-discharge profiles)

BUT High energy density

REVIEW

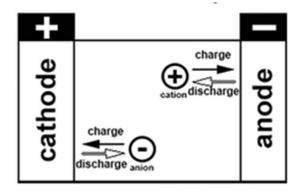
Sodium-ion Capacito


Cell Configurations and Electrode Materials for Nonaqueous Sodium-Ion Capacitors: The Current State of the Field

Alexey M. Glushenkov* and Amanda V. Ellis

BSGIP: dual-ion batteries

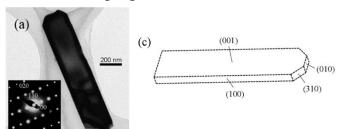
Joint project with University of Münster, Germany



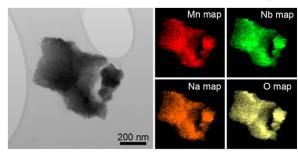
Supported by an initial grant from

Operating principle

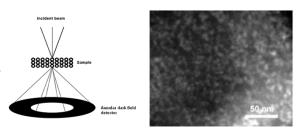
- Graphite is a possible cathode material
- Co, Ni use can be avoided in Li-based batteries
- Na and K-based dual-ion batteries are possible

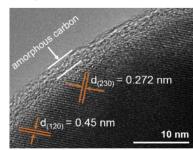


BSGIP: Application of TEM analysis to battery materials

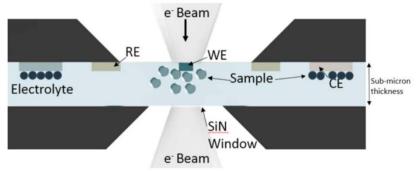


(talk on Oct 9, EEM symposium)


Imaging and diffraction


EDX analysis and mapping

Scanning TEM


High resolution TEM

BSGIP: in-situ TEM/electrochemistry in liquid cells

A schematic of a three-electrode liquid cell

- Operation with actual battery electrolyte, realistic conditions
- Possibility to study full cells
- Observation of metal plating/stripping, electrode behaviour and SEI

Summary

- Lithium-ion batteries are dominating major applications
- Mining industry in Australia is actively targeting spodumene and lithium hydroxide production
- Australia is a global leader in battery installations in grid and at home
- In contrary, the uptake of electric vehicle in Australia is lagging that in Europe, the US and China
- A brief overview of research landscape in Australia has been provided
- The Australian National University has launched Battery Storage and Grid Integration Program in 2018